Age-Related Differences in the Accuracy of Web Query-Based Predictions of Influenza-Like Illness
نویسندگان
چکیده
BACKGROUND Web queries are now widely used for modeling, nowcasting and forecasting influenza-like illness (ILI). However, given that ILI attack rates vary significantly across ages, in terms of both magnitude and timing, little is known about whether the association between ILI morbidity and ILI-related queries is comparable across different age-groups. The present study aimed to investigate features of the association between ILI morbidity and ILI-related query volume from the perspective of age. METHODS Since Google Flu Trends is unavailable in Italy, Google Trends was used to identify entry terms that correlated highly with official ILI surveillance data. All-age and age-class-specific modeling was performed by means of linear models with generalized least-square estimation. Hold-out validation was used to quantify prediction accuracy. For purposes of comparison, predictions generated by exponential smoothing were computed. RESULTS Five search terms showed high correlation coefficients of > .6. In comparison with exponential smoothing, the all-age query-based model correctly predicted the peak time and yielded a higher correlation coefficient with observed ILI morbidity (.978 vs. .929). However, query-based prediction of ILI morbidity was associated with a greater error. Age-class-specific query-based models varied significantly in terms of prediction accuracy. In the 0-4 and 25-44-year age-groups, these did well and outperformed exponential smoothing predictions; in the 15-24 and ≥ 65-year age-classes, however, the query-based models were inaccurate and highly overestimated peak height. In all but one age-class, peak timing predicted by the query-based models coincided with observed timing. CONCLUSIONS The accuracy of web query-based models in predicting ILI morbidity rates could differ among ages. Greater age-specific detail may be useful in flu query-based studies in order to account for age-specific features of the epidemiology of ILI.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملمدل جدیدی برای جستجوی عبارت بر اساس کمینه جابهجایی وزندار
Finding high-quality web pages is one of the most important tasks of search engines. The relevance between the documents found and the query searched depends on the user observation and increases the complexity of ranking algorithms. The other issue is that users often explore just the first 10 to 20 results while millions of pages related to a query may exist. So search engines have to use sui...
متن کاملEstimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea
BACKGROUND As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better...
متن کاملAnalysis of users’ query reformulation behavior in Web with regard to Wholis-tic/analytic cognitive styles, Web experience, and search task type
Background and Aim: The basic aim of the present study is to investigate users’ query reformulation behavior with regard to wholistic-analytic cognitive styles, search task type, and experience variables in using the Web. Method: This study is an applied research using survey method. A total of 321 search queries were submitted by 44 users. Data collection tools were Riding’s Cognitive Style A...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کامل